攻读数据科学硕士学位必须考虑的5个因素

编译

龚倩

校对

青暮

这篇文章介绍了在攻读数据科学或机器学习硕士学位时需要考虑的最重要的一些因素。作者是美国德克萨斯州奥斯汀的按需递送公司FavorDelivery高级数据科学家MatthewPrzybyla。

1

简介

我已经研究并做过许多数据科学领域的硕士项目,于是我开始逐渐认识到哪些特征能够决定一个项目是非常好或是仅仅还可以,以及总体而言需要考虑哪些因素。虽然在选择最终要攻读哪一个硕士学位时有无数因素需要考虑,但我总结了在数据科学领域选择硕士学位时需要考虑的五个因素。我希望你也能了解这些因素,并在进行选择时参考一下这些因素,希望这最终能帮助你成为一名拥有硕士学位的专业数据科学家。

2

学费

这个话题可能不太适合公开讨论,因为它常常涉及个人比较具体的金钱或财务状况,或者你有多少钱,你愿意花多少钱攻读一个学位。

话虽如此,我希望看到更多的人讨论学费及其影响,不仅是在求学之前,而且在选择自己的研究生项目之后。我读硕士花了不少钱,将近6万美元,尽管对我来说这确实是很大的一笔钱,但我认为,我的投资是得到了回报的,因此这个金额是我愿意支付的。

我的意思是,我取得了数据科学硕士学位,在完成学业后有了一份数据科学的工作,并长期在此领域从业,我向自己证明了所有投资都是值得的,因为我得到了在其他领域从业可能无法得到的丰厚报酬。虽然你面试或工作的一些公司可能不要求硕士学位,但至少有些公司是要求的,或者会把硕士学位作为一个职位诉求的加分项。一个硕士学位能够向公司证明,你花了数月的时间学习和专攻某种技能,从而让他们在你的面试表现之外对你的能力有更多的信任和信心。

话虽这么说,如果学费比较低,绝不意味着就是一项糟糕的投资,反之亦然,学费仅仅只是你在报读最终的数据科学硕士项目时需要考虑的一个因素而已。其实最终你需要考虑很多问题,总的来说,学费,也就是花多少钱攻读学位是非常重要的一个问题。

以下是你需要考虑学费的原因:

投资回报你愿意在一定时间内承担多少债务学费花多少钱对你来说是可接受的学费是否比我以下要讨论的其他因素更重要你的雇主是否愿意支付你的学费正如你所见,学费是决定你最终上哪所学校的一个重要因素。完成学业后,如果你的目标不是成为一名数据科学家,那就不要让自己负债累累;如果你只是出于好奇想学习更多知识,不如攻读一个更便宜、所需时间更短的数据科学学位。但是,当你决定攻读硕士学位时,学校本身、它所处的地理位置都和学费一样重要。

3

学费学校的地理位置(即使是远程上课)

现在很多硕士课程都是在线的,尤其是在数据科学领域。世界发展的态势使得在线上课更加普遍。但即使学校的课程是完全在线或远程上课的,也必须考虑学校的地理位置。

究其原因,是因为学校所在的地方往往就是你工作的地方。当你申请数据科学职位时,如果你是在该公司所在州或城市的一所名校取得的学位,那你会更有优势。

举个例子,我在德克萨斯州的达拉斯市的南卫理公会大学(SMU)完成了硕士学位。大部分课程都是远程的(有一些需要到学校上)。因为我是在德克萨斯州求职,该州的公司、招聘经理和招聘人员对SMU这所学校都更熟悉。虽然这不一定能保证更多的招聘人员和经理会更加认可你,但对一些招聘人员来说,这种熟悉感确实有可能让他们更认可你,而这多一点的认可就可能发挥很大的作用。此外,如果你上的学校离你住的地方比较近,你可以和其他上同一所学校的人建立联系和社交网络。

如果你需要到学校去上课,那么学校的地理位置绝对会是一个重要的决定因素。大多数人会一边读研一边工作,也就是说,如果通勤时间短是比较好的,这样你就不会耗费太多精力在赶路上。

为什么需要考虑学校的地理位置:

学校的名声会让公司、招聘人员和招聘经理注意到你,或更容易让你脱颖而出与校友建立联系如果是在校上课,学校的地理位置就决定着通勤时间的长短无论你是在校学习、远程或在线学习,还是两种形式的混合学习,在决定报考一个学校的数据科学硕士时,学校所处的地理位置都是一个重要因素。接下来需要考虑的是课程时长。

4

课程时长

根据你目前的状况,你可能也觉得这个因素是特别重要的。数据科学硕士课程的时长差异很大。虽然通常来说攻读硕士学位需要两年的时间,但有些项目时间很短——甚至大约只需一年的时间。你可能还需要解决一些其他的问题,比如你是否有孩子、是否想在长达一年的时间里一边学习一边工作、是否想在学习之余有三个月的假期或暑假等等。我读完硕士总共用了将近2年的时间,有33个学分。这种安排是比较合适的,因为我有一些休息时间,同时也没有浪费太多时间。

课程时长可能会受到以下因素的影响:

你是希望上一个慢速课程还是常规课程如果你时间紧迫,有些方向还能提供快速课程你的老板支付给你的工资能够负担一个较短还是较长时长的课程如果你有家庭,并想选择一个慢速课程,以便减少一周的课程量,这样你就能更好地平衡学习、工作和生活以上几个原因可以说明为什么课程时长也是重要的考虑因素。我已经讨论了一些我所经历过的显而易见的原因,应该也可以适用于你的情况。一旦你深入了解了特定的硕士方向,你也就会想要考虑该方向提供的不同类型的专业。

5

专业类型

通常,硕士项目会提供更具体的数据科学领域的专业。不同方向也会有不同的专业。例如,我可以选择更多地偏向于商业分析,而不是机器学习。有些方向可能根本不分方向,所以谨记这一点也很重要。

我选择把重点放在机器学习上,因为我想更多地了解常见的机器学习算法,以及如何将它们应用到商业环境中,还有利用机器学习来编程。商业分析方法适用于那些希望更加面向客户的人,可能是公司的高层领导,他们利用数据科学的知识来帮助他们进行决策;或者是那些希望更少


转载请注明:http://www.antimexchemical.com/jbgs/10190.html